Intrinsically Nonswellable Multifunctional Hydrogel with Dynamic Nanoconfinement Networks for Robust Tissue‐Adaptable Bioelectronics

Author:

Park Jae12ORCID,Kim Ju Yeon3,Heo Jeong Hyun4ORCID,Kim Yeonju1,Kim Soo A1,Park Kijun1,Lee Yeontaek1ORCID,Jin Yoonhee4ORCID,Shin Su Ryon5,Kim Dae Woo3ORCID,Seo Jungmok12ORCID

Affiliation:

1. School of Electrical and Electronic Engineering Yonsei University Seoul 03722 Republic of Korea

2. LYNK Solutec inc. Seoul 03722 Republic of Korea

3. Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea

4. Department of Physiology Yonsei University College of Medicine Seoul 03722 Republic of Korea

5. Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School 65 Lansdowne Street Cambridge MA 02139 USA

Abstract

AbstractDeveloping bioelectronics that retains their long‐term functionalities in the human body during daily activities is a current critical issue. To accomplish this, robust tissue adaptability and biointerfacing of bioelectronics should be achieved. Hydrogels have emerged as promising materials for bioelectronics that can softly adapt to and interface with tissues. However, hydrogels lack toughness, requisite electrical properties, and fabrication methodologies. Additionally, the water‐swellable property of hydrogels weakens their mechanical properties. In this work, an intrinsically nonswellable multifunctional hydrogel exhibiting tissue‐like moduli ranging from 10 to 100 kPa, toughness (400–873 J m−3), stretchability (≈1000% strain), and rapid self‐healing ability (within 5 min), is developed. The incorporation of carboxyl‐ and hydroxyl‐functionalized carbon nanotubes (fCNTs) ensures high conductivity of the hydrogel (≈40 S m−1), which can be maintained and recovered even after stretching or rupture. After a simple chemical modification, the hydrogel shows tissue‐adhesive properties (≈50 kPa) against the target tissues. Moreover, the hydrogel can be 3D printed with a high resolution (≈100 µm) through heat treatment owing to its shear‐thinning capacity, endowing it with fabrication versatility. The hydrogel is successfully applied to underwater electromyography (EMG) detection and ex vivo bladder expansion monitoring, demonstrating its potential for practical bioelectronics.

Funder

National Research Foundation of Korea

Yonsei University

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3