Pixelating Responsive Structural Color via a Bioinspired Morphable Concavity Array (MoCA) Composed of 2D Photonic Crystal Elastomer Actuators

Author:

Pan Yi1ORCID,Li Chang1ORCID,Hou Xiaoyu2,Yang Zhenyu1,Li Mingzhu2ORCID,Shum Ho Cheung13ORCID

Affiliation:

1. Department of Mechanical Engineering The University of Hong Kong Pokfulam Road Hong Kong 999077 P. R. China

2. Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

3. Advanced Biomedical Instrumentation Centre Hong Kong Science Park New Territories, Shatin Hong Kong 999077 P. R. China

Abstract

AbstractStimuli‐responsive structural coloration allows the color change of soft substrates in response to environmental stimuli such as heat, humidity, and solvents. Such color‐changing systems enable smart soft devices, such as the camouflageable skin of soft robots or chromatic sensors in wearable devices. However, individually and independently programmable stimuli‐responsive color pixels remain significant challenges among the existing color‐changing soft materials and devices, which are crucial for dynamic display. Inspired by the dual‐color concavities on butterfly wings, a morphable concavity array to pixelate the structural color of two‐dimensional photonic crystal elastomer and achieve individually and independently addressable stimuli‐responsive color pixels is designed. The morphable concavity can convert its surface between concave and flat upon changes in the solvent and temperature, accompanied by angle‐dependent color‐shifting. Through multichannel microfluidics, the color of each concavity can be controllably switched. Based on the system, the dynamic display by forming reversibly editable letters and patterns for anti‐counterfeiting and encryption are demonstrated. It is believed that the strategy of pixelating optical properties through locally altering surface topography can inspire the design of new transformable optical devices, such as artificial compound eyes or crystalline lenses for biomimetic and robotic applications.

Funder

Croucher Foundation

National Science Fund for Distinguished Young Scholars

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3