Aspergillus Niger Derived Wrinkle‐Like Carbon as Superior Electrode for Advanced Vanadium Redox Flow Batteries

Author:

Deng Qi12ORCID,Zhou Wei‐Bin2,Wang Hong‐Rui3,Fu Na4,Wu Xiong‐Wei345ORCID,Wu Yu‐Ping6

Affiliation:

1. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China

2. State Key Laboratory of Utilization of Woody Oil Resource of China Hunan Academy of Forestry Changsha Hunan 410018 P. R. China

3. School of Chemistry and Materials Science Hunan Agricultural University Changsha Hunan 410128 P. R. China

4. Hunan Province Yinfeng New Energy Co., Ltd. Changsha Hunan 410014 P. R. China

5. College of Electrical and Information Engineering Hunan University Changsha Hunan 410082 P. R. China

6. School of Energy and Environment Southeast University Nanjing 211189 P. R. China

Abstract

AbstractThe scarcity of high electrocatalysis composite electrode materials has long been suppressing the redox reaction of V(II)/V(III) and V(IV)/V(V) couples in high performance vanadium redox flow batteries (VRFBs). Herein, through ingeniously regulating the growth of Aspergillus Niger, a wrinkle‐like carbon (WLC) material that possesses edge‐rich carbon, abundant heteroatoms, and nature wrinkle‐like structure is obtained, which is subsequently successfully introduced and uniform dispersed on the surface of carbon fiber of graphite felt (GF). This composite electrode presents a lower overpotential and higher charge transfer ability, as the codoped multiheteroatoms increase the electrocatalysis activity and the wrinkled structure affords more abundant reaction area for vanadium ions in the electrolyte when compared with the pristine GF electrode, which is also supported by the density functional theory (DFT) calculations. Hence, the assembled battery using WLC electrodes achieves a high energy efficiency of 74.5% for 300 cycles at a high current density of 200 mA cm−2, as well as the highest current density of 450 mA cm−2. The WLC material not only uncovers huge potential in promoting the application of VRFBs, but also offers referential solution to synthesis microorganism‐based high‐performance electrode in other energy storage systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3