Amorphous K‐Buserite Microspheres for High‐Performance Aqueous Zn‐Ion Batteries and Hybrid Supercapacitors

Author:

Wang Zhi‐Qiang12,Chen Hong‐Ming12,Liu Xiao‐Dong12,Song Li‐Ying12,Zhang Bu‐Sheng12,Yang Yun‐Guo1,Zhang Zhao‐Cheng3,Li Qian4,Gao Tian‐Qi3,Bai Jing12,Lau Woon‐Ming12,Zhou Dan12ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Materials Genome Engineering and Center for Green Innovation School of Mathematics and Physics University of Science and Technology Beijing Beijing 100083 P. R. China

2. Shunde Innovation School University of Science and Technology Beijing Foshan Guangdong 528000 P. R. China

3. Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials Institute for New Energy Materials and Low‐Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 P. R. China

4. The Center of New Energy Materials and Technology School of Materials Science and Engineering Southwest Petroleum University Chengdu Sichuan 610500 P. R. China

Abstract

AbstractAqueous Zn‐ion batteries (AZIBs) and Zn‐ion hybrid supercapacitors (AZHSCs) are considered promising energy‐storage alternatives to Li‐ion batteries due to the attractive merits of low‐price and high‐safety. However, the lack of suitable cathode materials always hinders their large‐scale application. Herein, amorphous K‐buserite microspheres (denoted as K‐MnOx) are reported as cathode materials for both AZIBs and AZHSCs, and the energy‐storage mechanism is systematically revealed. It is found that K‐MnOx is composed of rich amorphous K‐buserite units, which can irreversibly be transformed into amorphous Zn‐buserite units in the first discharge cycle. Innovatively, the transformed Zn‐buserite acts as active materials in the following cycles and is highly active/stable for fast Zn‐diffusion and superhigh pseudocapacitance, enabling the achievement of high‐efficiency energy storage. In the AZIBs, K‐MnOx delivers 306 mAh g−1 after 100 cycles at 0.1 A g−1 with 102% capacity retention, while in the AZHSCs, it shows 515.0/116.0 F g−1 at 0.15/20.0 A g−1 with 92.9% capacitance retention at 5.0 A g−1 after 20 000 cycles. Besides, the power/energy density of AZHSCs device can reach up to 16.94 kW kg−1 (at 20 A g−1)/206.7 Wh kg−1 (at 0.15 A g−1). This work may provide some references for designing next‐generation aqueous energy‐storage devices with high energy/power density.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3