LRRK2 Gly2019Ser Mutation Promotes ER Stress via Interacting with THBS1/TGF‐β1 in Parkinson's Disease

Author:

Yao Longping123ORCID,Lu Fengfei2,Koc Sumeyye4,Zheng Zijian1,Wang Baoyan2,Zhang Shizhong2,Skutella Thomas3,Lu Guohui1

Affiliation:

1. Department of Neurosurgery First Affiliated Hospital of Nanchang University Nanchang 330209 P. R. China

2. Department of Neurosurgery Zhujiang Hospital Southern Medical University Guangzhou 510282 P. R. China

3. Institute for Anatomy and Cell Biology Medical Faculty Heidelberg University 69120 Heidelberg Germany

4. Department of Neuroscience Institute of Health Sciences Ondokuz Mayıs University Samsun 55139 Turkey

Abstract

AbstractThe gene mutations of LRRK2, which encodes leucine‐rich repeat kinase 2 (LRRK2), are associated with one of the most prevalent monogenic forms of Parkinson's disease (PD). However, the potential effectors of the Gly2019Ser (G2019S) mutation remain unknown. In this study, the authors investigate the effects of LRRK2 G2019S on endoplasmic reticulum (ER) stress in induced pluripotent stem cell (iPSC)‐induced dopamine neurons and explore potential therapeutic targets in mice model. These findings demonstrate that LRRK2 G2019S significantly promotes ER stress in neurons and mice. Interestingly, inhibiting LRRK2 activity can ameliorate ER stress induced by the mutation. Moreover, LRRK2 mutation can induce ER stress by directly interacting with thrombospondin‐1/transforming growth factor beta1 (THBS1/TGF‐β1). Inhibition of LRRK2 kinase activity can effectively suppress ER stress and the expression of THBS1/TGF‐β1. Knocking down THBS1 can rescue ER stress by interacting with TGF‐β1 and behavior burden caused by the LRRK2 mutation, while suppression of TGF‐β1 has a similar effect. Overall, it is demonstrated that the LRRK2 mutation promotes ER stress by directly interacting with THBS1/TGF‐β1, leading to neural death in PD. These findings provide valuable insights into the pathogenesis of PD, highlighting potential diagnostic markers and therapeutic targets.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3