Affiliation:
1. State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 China
Abstract
AbstractUranium extraction from seawater has attracted worldwide attention due to the massive reserves of uranium. Due to the straightforward synthesis and strong affinity toward uranyl ions (UO22+), the amidoxime group shows promise for use in highly efficient uranium capture. However, the low mass transfer efficiency within traditional amidoxime‐based adsorbents severely limits the adsorption rate and the utilization of adsorption sites. In this work, a macroporous polyamidoxime (PAO) hydrogel is prepared by yeast‐based biological foaming combined with ice crystal dispersion that effectively maintained the yeast activity. The yeast‐raised PAO (Y‐PAO) adsorbent has numerous bubble‐like holes with an average pore diameter >100 µm. These macropores connected with the intrinsic micropores of PAO to construct efficient diffusion channels for UO22+ provided fast mass transporting channels, leading to the sufficient exposure of hidden binding sites. The maximum adsorption capacity of Y‐PAO membrane reached 10.07 mg‐U/g‐ads, ≈1.54 times higher than that of the control sample. It took only eight days for Y‐PAO to reach the saturation adsorption capacity of the control PAO (6.47 mg‐U/g‐ads, 28 days). Meanwhile, Y‐PAO possessed excellent ion selectivity, good reusability, and low cost. Overall, the Y‐PAO membrane is a highly promising adsorbent for use in industrial‐scale uranium extraction from seawater.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献