Yeast‐Raised Polyamidoxime Hydrogel Prepared by Ice Crystal Dispersion for Efficient Uranium Extraction from Seawater

Author:

Wang Hui1,Yao Weikun1,Yuan Yihui1,Shi Se1,Liu Tao1,Wang Ning1ORCID

Affiliation:

1. State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 China

Abstract

AbstractUranium extraction from seawater has attracted worldwide attention due to the massive reserves of uranium. Due to the straightforward synthesis and strong affinity toward uranyl ions (UO22+), the amidoxime group shows promise for use in highly efficient uranium capture.  However, the low mass transfer efficiency within traditional amidoxime‐based adsorbents severely limits the adsorption rate and the utilization of adsorption sites. In this work, a macroporous polyamidoxime (PAO) hydrogel is prepared by yeast‐based biological foaming combined with ice crystal dispersion that effectively maintained the yeast activity. The yeast‐raised PAO (Y‐PAO) adsorbent has numerous bubble‐like holes with an average pore diameter >100 µm. These macropores connected with the intrinsic micropores of PAO to construct efficient diffusion channels for UO22+ provided fast mass transporting channels, leading to the sufficient exposure of hidden binding sites. The maximum adsorption capacity of Y‐PAO membrane reached 10.07 mg‐U/g‐ads, ≈1.54 times higher than that of the control sample. It took only eight days for Y‐PAO to reach the saturation adsorption capacity of the control PAO (6.47 mg‐U/g‐ads, 28 days). Meanwhile, Y‐PAO possessed excellent ion selectivity, good reusability, and low cost. Overall, the Y‐PAO membrane is a highly promising adsorbent for use in industrial‐scale uranium extraction from seawater.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3