Pearl‐Structure‐Enhanced NASICON Cathode toward Ultrastable Sodium‐Ion Batteries

Author:

Zhao Xin‐Xin1,Fu Wangqin2ORCID,Zhang Hong‐Xia1,Guo Jin‐Zhi3,Gu Zhen‐Yi3,Wang Xiao‐Tong3,Yang Jia‐Lin3,Lü Hong‐Yan1,Wu Xing‐Long13ORCID,Ang Edison Huixiang2ORCID

Affiliation:

1. Faculty of Chemistry Northeast Normal University 130024 Changchun P. R. China

2. National Institute of Education Singapore Nanyang Technological University Singapore 637616 Singapore Singapore

3. MOE Key Laboratory for UV Light‐Emitting Materials and Technology Northeast Normal University 130024 Changchun P. R. China

Abstract

AbstractBased on the favorable ionic conductivity and structural stability, sodium superionic conductor (NASICON) materials especially utilizing multivalent redox reaction of vanadium are one of the most promising cathodes in sodium‐ion batteries (SIBs). To further boost their application in large‐scale energy storage production, a rational strategy is to tailor vanadium with earth‐abundant and cheap elements (such as Fe, Mn), reducing the cost and toxicity of vanadium‐based NASICON materials. Here, the Na3.05V1.03Fe0.97(PO4)3 (NVFP) is synthesized with highly conductive Ketjen Black (KB) by ball‐milling assisted sol‐gel method. The pearl‐like KB branch chains encircle the NVFP (p‐NVFP), the segregated particles possess promoted overall conductivity, balanced charge, and modulated crystal structure during electrochemical progress. The p‐NVFP obtains significantly enhanced ion diffusion ability and low volume change (2.99%). Meanwhile, it delivers a durable cycling performance (87.7% capacity retention over 5000 cycles at 5 C) in half cells. Surprisingly, the full cells of p‐NVFP reveal a remarkable capability of 84.9 mAh g−1 at 20 C with good cycling performance (capacity decay rate is 0.016% per cycle at 2 C). The structure modulation of the p‐NVFP provides a rational design on the superiority of others to be put into practice.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Higher Education Discipline Innovation Project

National Institute of Education

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3