Ozone‐Induced Rapid and Green Synthesis of Polydopamine Coatings with High Uniformity and Enhanced Stability

Author:

Tan Liru1,Zhu Tang1ORCID,Huang Yuchan1,Yuan Huixin1,Shi Ludi1,Zhu Zijuan1,Yao Pingping1,Zhu Caizhen1,Xu Jian1

Affiliation:

1. Institute of Low‐dimensional Materials Genome Initiative College of Chemistry and Environmental Engineering Shenzhen University Guangdong 518060 P. R. China

Abstract

AbstractThe development of green, controllable, and simplified pathways for rapid dopamine polymerization holds significant importance in the field of polydopamine (PDA) surface chemistry. In this study, a green strategy is successfully devised to accelerate and control the polymerization of dopamine through the introduction of ozone (O3). The findings reveal that ozone serves as an eco‐friendly trigger, significantly accelerating the dopamine polymerization process across a broad pH range, spanning from 4.0 to 10.0. Notably, the deposition rate of PDA coatings on a silicon wafer reaches an impressive value of ≈64.8 nm h−1 (pH 8.5), which is 30 times higher than that of traditional air‐assisted PDA and comparable to the fastest reported method. Furthermore, ozone exhibits the ability to accelerate dopamine polymerization even under low temperatures. It also enables control over the inhibition–initiation of the polymerization process by regulating the “ON/OFF” mode of the ozone gas. Moreover, the ozone‐induced PDA coatings demonstrate exceptional characteristics, including high homogeneity, good hydrophilicity, and remarkable chemical and mechanical stability. Additionally, the ozone‐induced PDA coatings can be rapidly and effectively deposited onto a wide range of substrates, particularly those that are adhesion‐resistant, such as polytetrafluoroethylene (PTFE).

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3