Achieving Continuous Self‐Powered Energy Conversion‐Storage‐Supply Integrated System Based on Carbon Felt

Author:

Peiyuan Ji1,Qianying Li1,Xuemei Zhang1,Yawen Hu1,Xiangyu Han2,Dazhi Zhang13,Chenguo Hu1,Yi Xi1ORCID

Affiliation:

1. Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials Department of Applied Physics Analytical and Testing Center Chongqing University Chongqing 400044 P. R. China

2. School of Materials Science and Engineering Chongqing Jiaotong University Chongqing 400074 China

3. Department of New Energy Power Evaluation and Research China Automotive Engineering Research Institute Co., Ltd Chongqing 401122 China

Abstract

AbstractEfficient harvesting and storage of dispersed irregular energy from the environment are crucial to the demand for the distributed devices of the Internet of Things (IoTs). Here, a carbon felt (CF)‐based energy conversion‐storage‐supply integrated system (CECIS) that contains a CF‐based solid‐state supercapacitor (CSSC) and a CF‐based triboelectric nanogenerator (C‐TENG) is presented, which is capable of simultaneously energy storage and conversion. The simple treated CF not only delivers a maximal specific capacitance of 402.4 F g−1 but also prominent supercapacitor characteristics with fast charge and slow discharge, enabling 38 LEDs successfully lightened for more than 900 s after a wireless charging time of only 2 s. With the original CF as the sensing layer, buffer layer, and current collector of C‐TENG, the maximal power of 91.5 mW is attained. The CECIS shows a competitive output performance. The time ratio of the duration of supply energy to the harvesting and storage reaches 9.6:1, meaning that it is competent for the continuous energy application when the effective working time of C‐TENG is longer than one‐tenth of the whole day. This study not only highlights the great potential of CECIS in sustainable energy harvesting and storage but also lays the foundation for the ultimate realization of IoTs.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3