New [3+2+1] Iridium Complexes as Effective Phosphorescent Sensitizers for Efficient Narrowband Saturated–Blue Hyper–OLEDs

Author:

Wu Chengcheng12,Tong Kai‐Ning2,Shi Kefei12,Jin Zhaoyun2,Wu Yuan3,Mu Yingxiao4,Huo Yanping4,Tang Man‐Chung2,Yang Chen3,Meng Hong5,Kang Feiyu12,Wei Guodan12ORCID

Affiliation:

1. Tsinghua–Berkeley Shenzhen Institute (TBSI) Tsinghua University Shenzhen 518055 China

2. Institute of Materials Research Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China

3. PURI Materials, Inc Shenzhen 518133 China

4. School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China

5. School of Advanced Materials Shenzhen Graduate School Peking University Shenzhen 518055 China

Abstract

AbstractTwo newly designed and synthesized [3+2+1] iridium complexes through introducing bulky trimethylsiliyl (TMS) groups are doped with a terminal emitter of v–DABNA to form an coincident overlapping spectra between the emission of these two phosphors and the absorption of v–DABNA, creating cascade resonant energy transfer for efficient triplet harvesting. To boost the color quality and efficiency, the fabricated hyper‐OLEDs have been optimized to achieve a high external quantum efficiency of 31.06%, which has been among the highest efficiency results reported for phosphor sensitized saturated‐blue hyper‐OLEDs, and pure blue emission peak at 467 nm with the full width at half maxima (FWHM) as narrow as 18 nm and the CIEy values down to 0.097, satisfying the National Institute of Standards and Technology (NIST) requirement for saturated blue OLEDs display. Surprisingly, such hyper‐OLEDs have obtained the converted lifetime (LT50) up to 4552 h at the brightness of 100 cd m−2, demonstrating effective Förster resonance energy transfer (FRET) process. Therefore, employing these new bulky TMS substituent [3+2+1] iridium(III) complexes for effective sensitizers can greatly pave the way for further development of high efficiency and stable blue OLEDs in display and lighting applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3