Selenium Nanodots (SENDs) as Antioxidants and Antioxidant‐Prodrugs to Rescue Islet β Cells in Type 2 Diabetes Mellitus by Restoring Mitophagy and Alleviating Endoplasmic Reticulum Stress

Author:

Huang Qiong12,Liu Zerun12,Yang Yunrong12,Yang Yuqi12,Huang Ting12,Hong Ying12,Zhang Jinping12,Chen Qiaohui34,Zhao Tianjiao34,Xiao Zuoxiu34,Gong Xuejun5,Jiang Yitian34,Peng Jiang34,Nan Yayun6,Ai Kelong34ORCID

Affiliation:

1. Department of Pharmacy Xiangya Hospital Central South University Changsha 410008 China

2. National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 China

3. Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 China

4. Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 China

5. Pancreatic Surgery Xiangya Hospital Central South University Changsha 410008 China

6. Geriatric Medical Center People's Hospital of Ningxia Hui Autonomous Region Yinchuan 750002 China

Abstract

AbstractPreventing islet β‐cells death is crucial for treating type 2 diabetes mellitus (T2DM). Currently, clinical drugs are being developed to improve the quality of T2DM care and self‐care, but drugs focused on reducing islets β‐cell death are lacking. Given that β‐cell death in T2DM is dominated ultimately by excessive reactive oxygen species (ROS), eliminating excessive ROS in β‐cells is a highly promising therapeutic strategy. Nevertheless, no antioxidants have been approved for T2DM therapy because most of them cannot meet the long‐term and stable elimination of ROS in β‐cells without eliciting toxic side‐effects. Here, it is proposed to restore the endogenous antioxidant capacity of β‐cells to efficiently prevent β‐cell death using selenium nanodots (SENDs), a prodrug of the antioxidant enzyme glutathione peroxidase 1 (GPX1). SENDs not only scavenge ROS effectively, but also “send” selenium precisely to β‐cells with ROS response to greatly enhance the antioxidant capacity of β‐cells by increasing GPX1 expression. Therefore, SENDs greatly rescue β‐cells by restoring mitophagy and alleviating endoplasmic reticulum stress (ERS), and demonstrate much stronger efficacy than the first‐line drug metformin for T2DM treatment. Overall, this strategy highlights the great clinical application prospects of SENDs, offering a paradigm for an antioxidant enzyme prodrug for T2DM treatment.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3