Affiliation:
1. School of Metallurgy and Environment Central South University Changsha 410083 China
2. College of Environmental Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
3. Faculty of Life Science and Technology Central South University of Forestry and Technology Changsha 410004 China
4. Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution Central South University Changsha 410083 China
Abstract
AbstractSilver (Ag) is deemed a promising anode material for capacitive deionization (CDI) due to its high theoretical capacity and efficient selectivity to Cl−. However, the strong volume change during the conversion reaction significantly undermines the cycling performance of the Ag electrode. Additionally, achieving well‐dispersed Ag in the active matrix is challenging, as Ag electrodes prepared by conventional thermal reduction tend to agglomerate. Herein, the organic linker confinement strategy is proposed, applying metal–organic framework (MOF) chemistry between Ag nodes and organic ligands to construct Ag‐based MOF. The uniform dispersion of Ag at the molecular level, confined in the organic matrix, efficiently enhances the utilization of active sites, and strengthens the interfacial stability of Ag. Consequently, the Ag‐MOF for the CDI anode exhibits an excellent Cl− removal capacity of 121.52 mg g−1 at 20 mA g−1 in 500 mg L−1 NaCl solution, and a high Ag utilization rate of 60.54%. After 100 cycles, a capacity retention of 96.93% is achieved. Furthermore, the Cl− capture mechanism of Ag‐MOF is elucidated through density functional theory (DFT) calculations, ex situ XRD, ex situ Raman and XPS. This ingenious electrode design can offer valuable insights for the development of high‐performance conversion electrodes for CDI applications.
Funder
National Natural Science Foundation of China
Huxiang Youth Talent Support Program
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Adsorbents for water desalination;Advances in Desalination Insights [Working Title];2024-08-22