A TaSnRK1α Modulates TaPAP6L‐Mediated Wheat Cold Tolerance through Regulating Endogenous Jasmonic Acid

Author:

Zhang Lingran1,Zhang Ning1,Wang Sisheng1,Tian Hongyan1,Liu Lu1,Pei Dan1,Yu Xiaodong1,Zhao Lei1,Chen Feng1ORCID

Affiliation:

1. National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy College Henan Agricultural University Zhengzhou 450046 China

Abstract

AbstractHere, a sucrose non‐fermenting‐1‐related protein kinase alpha subunit (TaSnRK1α‐1A) is identified as associated with cold stress through integration of genome‐wide association study, bulked segregant RNA sequencing, and virus‐induced gene silencing. It is confirmed that TaSnRK1α positively regulates cold tolerance by transgenes and ethyl methanesulfonate (EMS) mutants. A plastid‐lipid‐associated protein 6, chloroplastic‐like (TaPAP6L‐2B) strongly interacting with TaSnRK1α‐1A is screened. Molecular chaperone DJ‐1 family protein (TaDJ‐1‐7B) possibly bridged the interaction of TaSnRK1α‐1A and TaPAP6L‐2B. It is further revealed that TaSnRK1α‐1A phosphorylated TaPAP6L‐2B. Subsequently, a superior haplotype TaPAP6L‐2B30S/38S is identified and confirmed that both R30S and G38S are important phosphorylation sites that influence TaPAP6L‐2B in cold tolerance. Overexpression (OE) and EMS‐mutant lines verified TaPAP6L positively modulating cold tolerance. Furthermore, transcriptome sequencing revealed that TaPAP6L‐2B‐OE lines significantly increased jasmonic acid (JA) content, possibly by improving precursor α‐linolenic acid contributing to JA synthesis and by repressing JAR1 degrading JA. Exogenous JA significantly improved the cold tolerance of wheat plants. In summary, TaSnRK1α profoundly regulated cold stress, possibly through phosphorylating TaPAP6L to increase endogenous JA content of wheat plants.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3