Chloroquine Intervenes Nephrotoxicity of Nilotinib through Deubiquitinase USP13‐Mediated Stabilization of Bcl‐XL

Author:

Yan Hao1ORCID,Huang Xiangliang1ORCID,Xu Jiangxin1ORCID,Zhang Ying1,Chen Jiajia1,Xu Zhifei1,Li Hui1,Wang Zeng2,Yang Xiaochun1ORCID,Yang Bo3ORCID,He Qiaojun14ORCID,Luo Peihua15ORCID

Affiliation:

1. Center for Drug Safety Evaluation and Research of Zhejiang University College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China

2. Department of Pharmacy Zhejiang Cancer Hospital Hangzhou 310005 China

3. Institute of Pharmacology & Toxicology College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China

4. Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University Hangzhou 310018 China

5. Department of Cardiology Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310009 China

Abstract

AbstractNephrotoxicity has become prominent due to the increase in the clinical use of nilotinib, a second‐generation BCR‐ABL1 inhibitor in the first‐line treatment of Philadelphia chromosome‐positive chronic myeloid leukemia. To date, the mechanism of nilotinib nephrotoxicity is still unknown, leading to a lack of clinical intervention strategies. Here, it is found that nilotinib could induce glomerular atrophy, renal tubular degeneration, and kidney fibrosis in an animal model. Mechanistically, nilotinib induces intrinsic apoptosis by specifically reducing the level of BCL2 like 1 (Bcl‐XL) in both vascular endothelial cells and renal tubular epithelial cells, as well as in vivo. It is confirmed that chloroquine (CQ) intervenes with nilotinib‐induced apoptosis and improves mitochondrial integrity, reactive oxygen species accumulation, and DNA damage by reversing the decreased Bcl‐XL. The intervention effect is dependent on the alleviation of the nilotinib‐induced reduction in ubiquitin specific peptidase 13 (USP13) and does not rely on autophagy inhibition. Additionally, it is found that USP13 abrogates cell apoptosis by preventing excessive ubiquitin‒proteasome degradation of Bcl‐XL. In conclusion, the research reveals the molecular mechanism of nilotinib's nephrotoxicity, highlighting USP13 as an important regulator of Bcl‐XL stability in determining cell fate, and provides CQ analogs as a clinical intervention strategy for nilotinib's nephrotoxicity.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3