Trimethylsilyl Compounds for the Interfacial Stabilization of Thiophosphate‐Based Solid Electrolytes in All‐Solid‐State Batteries

Author:

Kim Kanghyeon1,Kim Taehun1,Song Gawon1,Lee Seonghyun1,Jung Min Soo1,Ha Seongmin2,Ha A. Reum2,Lee Kyu Tae1ORCID

Affiliation:

1. School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea

2. Advanced Battery Development Team 1 Hyundai Motor Company 37 Cheoldobangmulgwan‐ro, Uiwang‐Si Gyeonggi‐do 16082 Republic of Korea

Abstract

AbstractArgyrodite‐type Li6PS5Cl (LPSCl) has attracted much attention as a solid electrolyte for all‐solid‐state batteries (ASSBs) because of its high ionic conductivity and good mechanical flexibility. LPSCl, however, has challenges of translating research into practical applications, such as irreversible electrochemical degradation at the interface between LPSCl and cathode materials. Even for Li‐ion batteries (LIBs), liquid electrolytes have the same issue as electrolyte decomposition due to interfacial instability. Nonetheless, current LIBs are successfully commercialized because functional electrolyte additives give rise to the formation of stable cathode‐electrolyte interphase (CEI) and solid‐electrolyte interphase (SEI) layers, leading to supplementing the interfacial stability between electrolyte and electrode. Herein, inspired by the role of electrolyte additives for LIBs, trimethylsilyl compounds are introduced as solid electrolyte additives for improving the interfacial stability between sulfide‐based solid electrolytes and cathode materials. 2‐(Trimethylsilyl)ethanethiol (TMS‐SH), a solid electrolyte additive, is oxidatively decomposed during charge, forming a stable CEI layer. As a result, the CEI layer derived from TMS‐SH suppresses the interfacial degradation between LPSCl and LiCoO2, thereby leading to the excellent electrochemical performance of Li | LPSCl | LiCoO2, such as superior cycle life over 2000 cycles (85.0% of capacity retention after 2000 cycles).

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3