A High‐Density Hydrogen Bond Locking Strategy for Constructing Anisotropic High‐Strength Hydrogel‐Based Meniscus Substitute

Author:

Zhang Qian1,Yang Xuxuan1,Wang Kuan1,Xu Ziyang1,Liu Wenguang1ORCID

Affiliation:

1. School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin 300350 China

Abstract

AbstractMimicking anisotropic features is crucial for developing artificial load‐bearing soft tissues such as menisci). Here, a high‐density hydrogen bond locking (HDHBL) strategy, involving preloading a poly(N‐acryloylsemicarbazide) (PNASC) hydrogel with an aqueous solution containing a hydrogen bond breaking agent, followed by water exchange, to fabricate anisotropic high‐strength hydrogels are proposed. During this process, multiple high‐density hydrogen bonds of the PNASC network are re‐established, firmly freezing oriented molecular chains, and creating a network with an anisotropic microstructure. The resulting anisotropic hydrogels exhibit superior mechanical properties: tensile strength over 9 MPa, Young's modulus exceeding 120 MPa along the orientation direction, and fatigue thresholds exceeding 1900 J m−2. These properties meet the mechanical demands for load‐bearing tissue substitutes compared to other reported anti‐fatigue hydrogels. This strategy enables the construction of an anisotropic meniscal scaffold composed of circumferentially oriented microfibers by preloading a digital light processing‐3D printed PNASC hydrogel‐based wedge‐shaped construct with a resilient poly(N‐acryloyl glycinamide) hydrogel. The 12‐week implantation of a meniscus scaffold in rabbit knee joints after meniscectomy demonstrates a chondroprotective effect on the femoral condyle and tibial plateau, substantially ameliorating the progression of osteoarthritis. The HDHBL strategy enables the fabrication of various anisotropic polymer hydrogels, broadening their scope of application.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3