3D Printed Organisms Enabled by Aspiration‐Assisted Adaptive Strategies

Author:

Han Guebum12ORCID,Khosla Kanav12,Smith Kieran T.23,Ng Daniel Wai Hou1,Lee JiYong1,Ouyang Xia1,Bischof John C.124,McAlpine Michael C.124ORCID

Affiliation:

1. Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA

2. Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio) University of Minnesota Minneapolis MN 55455 USA

3. Department of Fisheries Wildlife and Conservation Biology University of Minnesota Minneapolis MN 55108 USA

4. Department of Biomedical Engineering University of Minnesota Minneapolis MN 55455 USA

Abstract

AbstractDevising an approach to deterministically position organisms can impact various fields such as bioimaging, cybernetics, cryopreservation, and organism‐integrated devices. This requires continuously assessing the locations of randomly distributed organisms to collect and transfer them to target spaces without harm. Here, an aspiration‐assisted adaptive printing system is developed that tracks, harvests, and relocates living and moving organisms on target spaces via a pick‐and‐place mechanism that continuously adapts to updated visual and spatial information about the organisms and target spaces. These adaptive printing strategies successfully positioned a single static organism, multiple organisms in droplets, and a single moving organism on target spaces. Their capabilities are exemplified by printing vitrification‐ready organisms in cryoprotectant droplets, sorting live organisms from dead ones, positioning organisms on curved surfaces, organizing organism‐powered displays, and integrating organisms with materials and devices in customizable shapes. These printing strategies can ultimately lead to autonomous biomanufacturing methods to evaluate and assemble organisms for a variety of single and multi‐organism‐based applications.

Funder

Regenerative Medicine Minnesota

National Institutes of Health

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3