Predicting the Lattice Thermal Conductivity in Nitride Perovskite LaWN3 from ab initio Lattice Dynamics

Author:

Tong Zhen12ORCID,Zhang Yatian3ORCID,Pecchia Alessandro4ORCID,Yam ChiYung12,Zhou Liujiang5,Dumitrică Traian6ORCID,Frauenheim Thomas123

Affiliation:

1. Shenzhen JL Computational Science and Applied Research Institute Shenzhen 518131 China

2. Beijing Computational Science Research Center Beijing 100193 China

3. Bremen Center for Computational Materials Science University of Bremen 28359 Bremen Germany

4. CNR‐ISMN Via Salaria Km 29.300, Monterotondo Rome 00017 Italy

5. School of Physics University of Electronic Science and Technology of China Chengdu 610054 China

6. Department of Mechanical Engineering University of Minnesota Minnesota 55455 USA

Abstract

AbstractUsing a density functional theory‐based thermal transport model, which includes the effects of temperature (T)‐dependent potential energy surface, lattice thermal expansion, force constant renormalization, and higher‐order quartic phonon scattering processes, it is found that the recently synthesized nitride perovskite LaWN3 displays strong anharmonic lattice dynamics manifested into a low lattice thermal conductivity (κL) and a non‐standard κLT−0.491 dependence. At high T, the departure from the standard κLT−1 law originates in the dual particle‐wave behavior of the heat carrying phonons, which includes vibrations tied to the N atoms. While the room temperature κL=2.98 W mK‐1 arises mainly from the conventional particle‐like propagation of phonons, there is also a significant atypical wave‐like phonon tunneling effect, leading to a 20% glass‐like heat transport contribution. The phonon broadening effect lowers the particle‐like contribution but increases the glass‐like one. Upon T increase, the glass‐like contribution increases and dominates above T = 850 K. Overall, the low κL with a weak T‐dependence points to a new utility for LaWN3 in energy technology applications, and motivates synthesis and exploration of nitride perovskites.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3