Affiliation:
1. Institute for Energy Research Jiangsu University Zhenjiang 212013 China
2. Institute of Advanced Manufacturing and Modern Equipment Technology, School of Mechanical Engineering Jiangsu University Zhenjiang 212013 China
3. Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
Abstract
AbstractAddition of organic compounds containing O/N heteroatoms to aqueous electrolytes such as ZnSO4 (ZS) solutions is one of the effective strategies to inhibit Zn anode dendrites and side reactions. However, addressing the stability of Zn plating/stripping at high current densities and areal capacities by this method is still a challenge, especially in capacitors known for high power and long life. Herein, an organic heterocyclic compound of 1, 4, 7, 10‐tetraazacyclododecane (TC) containing four symmetrically distributed N atoms is employed as ZS additive, expanding the life of Zn anodes from ≈ 30 h to 1000 and 240 h at deep plating/stripping conditions of 10 and 20 mA cm−2/mAh cm−2, respectively; the cumulative capacity is as high as 5.0 Ah cm−2 with 99% Coulombic efficiency, far exceeding reported additives. TC with higher binding energies than H2O for Zn species tends to adsorb to Zn (002) in a lying manner and participate in the solvation shell of Zn2+, thus avoiding Zn dendrites and side‐reaction damage, especially at high current densities. The TC‐endowed Zn anode's stability under such extreme conditions is verified in Zn‐ion capacitors (i.e., > 94.6% capacity retention after 28 000 cycles), providing new insights into the development of high‐power Zn‐based energy storage devices.
Funder
National Natural Science Foundation of China
Qinglan Project of Jiangsu Province of China
Science and Technology Bureau of Zhenjiang