Co‐Cultivated Enzyme Constraint Metabolic Network Model for Rational Guidance in Constructing Synthetic Consortia to Achieve Optimal Pathway Allocation Prediction

Author:

Xue Boyuan1,Liu Yu1,Yang Chen1,Liu Hao1,Yuan Qianqian2,Wang Shaojie1,Su Haijia1ORCID

Affiliation:

1. Beijing Key Laboratory of Bioprocess and Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

2. Biodesign Center Key Laboratory of Engineering Biology for Low‐carbon Manufacturing Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P. R. China

Abstract

AbstractSynthetic consortia have emerged as a promising biosynthetic platform that offers new opportunities for biosynthesis. Genome‐scale metabolic network models (GEMs) with complex constraints are extensively utilized to guide the synthesis in monocultures. However, few methods are currently available to guide the rational construction of synthetic consortia for predicting the optimal allocation strategy of synthetic pathways aimed at enhancing product synthesis. A standardized method to construct the co‐cultivated Enzyme Constraint metabolic network model (CulECpy) is proposed, which integrates enzyme constraints and modular interaction scale constraints based on the research concept of “independent + global”. This method is applied to construct several synthetic consortia models, which encompassed different target products, strains, synthetic pathways, and compositional structures. Analyzing the model, the optimal pathway allocation and initial inoculum ratio that enhance the synthesis of target products by synthetic consortia are predicted and verified. When comparing with the constructed co‐culture synthesis system, the normalized root mean square error of all optimal theoretical yield simulations is found to be less than or equal to 0.25. The analyses and verifications demonstrate that the method CulECpy can guide the rational construction of synthetic consortia systems to facilitate biochemical synthesis.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Double Thousand Plan of Jiangxi Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3