Screening Selection of Hydrogen Evolution‐Inhibiting and Zincphilic Alloy Anode for Aqueous Zn Battery

Author:

Wang Luyao12,Zhou Shaojie3,Yang Kai14,Huang Weiwei3,Ogata Shigenobu5,Gao Lei35,Pu Xiong124ORCID

Affiliation:

1. CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro‐Nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 China

2. School of Nanoscience and Engineering University of Chinese Academy of Sciences Beijing 100049 China

3. Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology University of Science and Technology Beijing Beijing 100083 China

4. Center on Nanoenergy Research School of Chemistry and Chemical Engineering School of Physical Science and Technology Guangxi University Nanning 530004 China

5. Department of Mechanical Science and Bioengineering Osaka University Osaka 560–8531 Japan

Abstract

AbstractThe hydrogen evolution reaction (HER) and Zn dendrites growth are two entangled detrimental effects hindering the application of aqueous Zn batteries. The alloying strategy is studied to be a convenient avenue to stabilize Zn anodes, but there still lacks global understanding when selecting reliable alloy elements. Herein, it is proposed to evaluate the Zn alloying elements in a holistic way by considering their effects on HER, zincphilicity, price, and environmental‐friendliness. Screening selection sequence is established through the theoretical evaluation of 17 common alloying elements according to their effects on hydrogen evolution and Zn nucleation thermodynamics. Two alloy electrodes with opposite predicted effects are prepared for experimental demonstration, i.e., HER‐inhibiting Bi and HER‐exacerbating Ni. Impressively, the optimum ZnBi alloy anode exhibits one order of magnitude lower hydrogen evolution rate than that of the pure Zn, leading to an ultra‐long plating/stripping cycling life for more than 11 000 cycles at a high current density of 20 mA cm−2 and 81% capacity retention for 170 cycles in a Zn‐V2O5 pouch cell. The study not only proposes a holistic alloy selection principle for Zn anode but also identifies a practically effective alloy element.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Scholarship Council

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3