Realization of nonreciprocal acoustic energy transfer using an asymmetric strong nonlinear vibroacoustic system

Author:

Jin Jiangming1ORCID,Huang Jingxiao1,Xiao Yuepeng1

Affiliation:

1. Sound and Vibration Laboratory, College of Mechanical Engineering Zhejiang University of Technology Hangzhou China

Abstract

AbstractIn this paper, an asymmetric vibroacoustic system that can passively realize nonreciprocal transmission of acoustic energy is reported. This experimental system consists of a waveguide, a strongly nonlinear membrane, and three acoustic cavities with different sizes. The theoretical modeling of the system is verified by experiments, and parametric analysis is also carried out. These intensive studies reveal the nonreciprocal transmission of acoustic energy in this prototype system. Under forward excitation, internal resonance between the two nonlinear normal modes of the vibroacoustic system occurs, and acoustic energy is irreversibly transferred from the waveguide to the nonlinear membrane. However, under backward excitation, there is no internal resonance in the system. Energy spectra and wavelet analysis are used to highlight the mechanism of nonreciprocal transfer of acoustic energy. Consequently, nearly unidirectional (preferential) transmission of acoustic energy transfer is shown by this system. The nonreciprocal acoustic energy transfer method illustrated in this paper provides a new way to design the odd acoustic element.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3