Nodes2STRNet for structural dense displacement recognition by deformable mesh model and motion representation

Author:

Zhao Jin1234,Li Hui123,Xu Yang123ORCID

Affiliation:

1. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology Harbin Institute of Technology Harbin China

2. Key Lab of Structures Dynamics Behavior and Control of the Ministry of Education Harbin Institute of Technology Harbin China

3. School of Civil Engineering Harbin Institute of Technology Harbin China

4. Department of System Design and Simulation Goldwind Science and Technology Co., Ltd. Beijing China

Abstract

AbstractDisplacement is a critical indicator for mechanical systems and civil structures. Conventional vision‐based displacement recognition methods mainly focus on the sparse identification of limited measurement points, and the motion representation of an entire structure is very challenging. This study proposes a novel Nodes2STRNet for structural dense displacement recognition using a handful of structural control nodes based on a deformable structural three‐dimensional mesh model, which consists of control node estimation subnetwork (NodesEstimate) and pose parameter recognition subnetwork (Nodes2PoseNet). NodesEstimate calculates the dense optical flow field based on FlowNet 2.0 and generates structural control node coordinates. Nodes2PoseNet uses structural control node coordinates as input and regresses structural pose parameters by a multilayer perceptron. A self‐supervised learning strategy is designed with a mean square error loss and L2 regularization to train Nodes2PoseNet. The effectiveness and accuracy of dense displacement recognition and robustness to light condition variations are validated by seismic shaking table tests of a four‐story‐building model. Comparative studies with image‐segmentation‐based Structure‐PoseNet show that the proposed Nodes2STRNet can achieve higher accuracy and better robustness against light condition variations. In addition, NodesEstimate does not require retraining when faced with new scenarios, and Nodes2PoseNet has high self‐supervised training efficiency with only a few control nodes instead of fully supervised pixel‐level segmentation.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3