An introductory review of swarm technology for spacecraft on‐orbit servicing

Author:

Asri El Ghali1,Zhu Zheng H.1ORCID

Affiliation:

1. Department of Mechanical Engineering York University Toronto Ontario Canada

Abstract

AbstractThis review paper presents a comprehensive evaluation and forward‐looking perspective on the underexplored topic of servicing target objects using spacecraft swarms. Such targets can be known or unknown, cooperative or uncooperative, and pose significant challenges in modern space operations due to their inherent complexity and unpredictability. Successfully servicing space objects is vital for active debris removal and broader on‐orbit servicing tasks such as satellite maintenance, repair, refueling, orbital assembly, and construction. Significant effort has been invested in the literature to explore the servicing of targets using a single spacecraft. Given its advantages and benefits, this paper expands the discussion to encompass a swarm approach to the problem. This review covers various single‐spacecraft approaches and presents a critical examination of the existing, although limited, body of work dedicated to servicing orbital objects using multiple spacecraft. The focus is also broadened to include some influential studies concerning the characterization, capture, and manipulation of physical objects by general multiagent systems, a subject with significant parallels to the core interest of this manuscript. Furthermore, this article also delves into the realm of simultaneous localization and mapping, highlighting its application within close‐proximity operations in space, especially when dealing with unknown uncooperative targets. Special attention is paid to the benefits that this field can receive from distributed multiagent architectures. Finally, an exploration of the promising field of swarm robotics is presented, with an emphasis on its potential to revolutionize the servicing of orbital target objects. Concurrently, a survey of general research directly engaging swarms in the orbital context is conducted. This review aims to bridge the knowledge gap and stimulate further research in the underexplored domain of servicing space targets with spacecraft swarms.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3