Multiple control of thermoelectric dual‐function metamaterials

Author:

Zhuang Pengfei1,Huang Jiping1ORCID

Affiliation:

1. Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE) Fudan University Shanghai China

Abstract

AbstractThermal metamaterials based on transformation theory offer a practical design for controlling heat flow by engineering spatial distributions of material parameters, implementing interesting functions such as cloaking, concentrating, and rotating. However, most existing designs are limited to serving a single target function within a given physical domain. Here, we analytically prove the form invariance of thermoelectric (TE) governing equations, ensuring precise controls of the thermal flux and electric current. Then, we propose a dual‐function metamaterial that can concentrate (or cloak) and rotate the TE field simultaneously. In addition, we introduce two practical control methods to realize corresponding functions: one is a temperature‐switching TE rotating concentrator cloak that can switch between cloaking and concentrating; the other is an electrically controlled TE rotating concentrator that can handle the temperature field precisely by adjusting external voltages. The theoretical predictions and finite‐element simulations agree well with each other. This work provides a unified framework for manipulating the direction and density of the TE field simultaneously and may contribute to the study of thermal management, such as thermal rectification and thermal diodes.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3