A Multiscale Deep‐Learning Model for Atom Identification from Low‐Signal‐to‐Noise‐Ratio Transmission Electron Microscopy Images

Author:

Lin Yanyu1,Yan Zhangyuan2,Tsang Chi Shing2,Wong Lok Wing23,Zheng Xiaodong23,Zheng Fangyuan2,Zhao Jiong23ORCID,Chen Ke145

Affiliation:

1. School of Future Technology South China University of Technology Guangzhou 510641 China

2. Department of Applied Physics The Hong Kong Polytechnic University Kowloon Hong Kong China

3. Polytechnic University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China

4. Peng Cheng Laboratory Shenzhen 518055 China

5. School of Electronic and Information Engineering South China University of Technology Guangzhou 510641 China

Abstract

Recent advancements in transmission electron microscopy (TEM) have enabled the study of atomic structures of materials at unprecedented scales as small as tens of picometers (pm). However, accurately detecting atomic positions from TEM images remains a challenging task. Traditional Gaussian fitting and peak‐finding algorithms are effective under ideal conditions but perform poorly on images with strong background noise or contamination areas (shown as ultrabright or ultradark contrasts). Moreover, these traditional algorithms require parameter tuning for different magnifications. To overcome these challenges, AtomID‐Net is presented, a deep neural network model for atomic detection from multiscale low‐SNR experimental images of scanning TEM (scanning transmission electron microscopy (STEM)). The model is trained on real images, which allows the robust and efficient detection of atomic positions, even in the presence of background noise and contamination. The evaluation on a test set of 50 images with a resolution of 800 × 800 yields an average F1‐Score of 0.964, which demonstrates significant improvements over existing peak‐finding algorithms.

Funder

National Natural Science Foundation of China

Hong Kong Polytechnic University

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3