Affiliation:
1. Nanomaterials & System Lab Major of Mechatronics Engineering Faculty of Applied Energy System Jeju National University Jeju 63243 South Korea
2. Nanomaterials & System Lab Major of Mechanical System Engineering College of Engineering Jeju National University Jeju 63243 South Korea
3. Research Institute of Energy New Industry (RINEI) Jeju National University Jeju 63243 South Korea
Abstract
Industrialization of green hydrogen production through electrolyzers is hindered by cost‐effective electrocatalysts and sluggish oxygen evolution reaction (OER). Herein, a facile one‐step hydrothermal technique for the in situ growth of non‐noble tin chalcogenides and their heterostructures on nickel foam (NF) as trifunctional electrocatalysts for hydrogen evolution reaction (HER), OER, and methanol oxidation reaction (MOR) is detailed. Among them, the heterostructured SnSe/SnTe/NF outperforms all others and recently reported catalysts, boasting an impressively low potential of −0.077, 1.51, and 1.33 V versus reversible hydrogen electrode to achieve 10 mA cm−2 for HER, OER, and MOR. Owing to the rod‐like morphology with hetero‐phases for enhancing the performance. Furthermore, a hybrid MOR‐mediated water electrolyzer requiring only 1.49 V to achieve 10 mA cm−2 with value‐added formate is introduced and traditional water electrolyzer is outperformed. Additionally, a zero‐gap commercial anion‐exchange membrane water electrolyzer (AEMWE) with bifunctional SnSe/SnTe/NF electrodes is tested, successfully achieving an industrially required 1 A cm−2 at a low potential of 1.93 V at 70 °C. Moreover, AEMWE using a windmill is powered and H2 and O2 production with wind speed is measured. Overall, this work paves the development of unexplored tin chalcogenide heterostructure as a potent candidate for cost‐effective, energy‐efficient, and carbon‐neutral hydrogen production.
Funder
National Research Foundation of Korea
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献