Surface Wrinkled Microsphere Enhanced Irregular Wound Healing Through Synergistic Hygroscopicity, Reversible Wet‐Adhesion and Antibacterial Properties

Author:

Xu Zhan12,Cui Yuqian12,Tian Weiguo1ORCID,Sun Feifei3,Zhang Jun12

Affiliation:

1. Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Engineering Plastics Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China

2. School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China

3. CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China

Abstract

Rapid and effective healing of irregular wounds caused by burns, lacerations, and blast injuries remains a persistent challenge in wound care. Hydrogel microsphere dressings that can adaptively fill and adhere to the wounds without external force are desired to treat irregular wounds, providing an external barrier and accelerating healing. Herein, we created multifunctional cellulose‐based surface‐wrinkled microspheres with antioxidant, antibacterial, hygroscopicity, wet‐adhesion and shape‐adaptive capabilities to relieve inflammation, bacteria and excess exudate situations in healing irregular wounds. This dressing rapidly adsorbs exudate and reversibly adheres wetly to the wounds upon being filled, effectively inhibiting bacterial infection and reducing the flooded exudate to accelerate wound healing. Polydopamine (PDA) provides catechol‐based tissue bioadhesion to microspheres through ππ stacking or hydrogen bond interaction, and also establishes a bond bridge with an antimicrobial component (thymol), which not only enables the microspheres to stably adhere to the wound to maintain hygroscopicity, but also improves the release of the introduced antimicrobial component (thymol). In vivo assays, as well as histopathological and immunofluorescence studies have shown that multifunctional cellulose‐based microspheres have excellent pro‐healing abilities and are promising candidates for dehumidification and healing of irregular wound in clinical applications.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3