High‐Efficiency Broadband Achromatic Metadevice for Spin‐to‐Orbital Angular Momentum Conversion of Light in the Near‐Infrared

Author:

Xie Lingyun1234,Wan Hengyi123,Ou Kai123ORCID,Long Junming1,Wang Zining1,Wang Yuchao123,Yang Hui5,Wei Zeyong123,Wang Zhanshan1236,Cheng Xinbin1236

Affiliation:

1. Institute of Precision Optical Engineering School of Physics Science and Engineering Tongji University Shanghai 200092 China

2. MOE Key Laboratory of Advanced Micro‐Structured Materials Shanghai 200092 China

3. Shanghai Frontiers Science Center of Digital Optics Shanghai 200092 China

4. College of Electronic and Information Engineering Tongji University Shanghai 200092 China

5. School of Physics and Electronics Hunan Normal University Changsha 410081 China

6. Shanghai Institute of Intelligent Science and Technology Tongji University Shanghai 200092 China

Abstract

Spin‐orbital angular momentum conversion (SOC) of light has found applications in classical and quantum optics. However, the existing SOC elements suffer severe restrictions on broadband integrated applications at miniature scales, due to bulky configurations, single function, and failing to control the dispersion. Herein, a high‐efficiency broadband achromatic method for independently and elaborately engineering the dispersion and the SOC of light based on a cascaded metasurface device is proposed. The metadevice is capable of efficiently decoupling the SOC from the modulation of dispersion with high‐broadband focusing efficiency up to 75%. For the proof of concept, the generation of high‐efficiency achromatic‐focused and spin‐controlled optical vortices with switchable topological charge ( and ) is successfully demonstrated. The presence of achromatically and highly concentrated optical vortices with tunable photonic angular momentum using spin as an optical knob makes the proposed ultracompact and multifunctional metadevice a promising platform for optical micromanipulation at nanoscale dimensions.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Major Projects of Special Development Funds in Zhangjiang National Independent Innovation Demonstration Zone, Shanghai

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3