Polarized Raman Microscopy to Image Microstructure Changes in Silicon Phthalocyanine Thin‐Films

Author:

Cranston Rosemary R.1,Lanosky Taylor D.1,Ewenike Raluchukwu1,Mckillop Sophia1,King Benjamin1,Lessard Benoît H.12ORCID

Affiliation:

1. Department of Chemical and Biological Engineering University of Ottawa 161 Louis Pasteur Ottawa K1N 6N5 ON Canada

2. School of Electrical Engineering and Computer Science University of Ottawa 800 King Edward Ave Ottawa K1N 6N5 ON Canada

Abstract

The choice of deposition technique and post deposition treatment can significantly influence the performance of organic electronic devices by altering the complex relationship between film properties and charge transport. Herein, the influence of deposition method and post deposition thermal annealing on the thin‐film properties of an emerging semiconductor, bis(tri‐n‐propylsilyl oxide) SiPc ((3PS)2‐SiPc), is examined by polarized Raman microscopy. Comparing physical vapor deposition (PVD) and spin‐coating, the orientation of (3PS)2‐SiPc molecules in films is determined and further characterized by X‐ray diffraction to assess variations in microstructure and morphology due to thermal annealing. Despite differences in film formation, non‐annealed organic thin‐film transistors (OTFTs) fabricated by PVD and spin‐coating resulted in similar electron mobilities (μe) on the order of 10−2 cm2 V−1 s−1 and threshold voltages (VT) of 10–20 V. Films fabricated by PVD annealed at 175 °C transition to a new polymorphic form with molecules aligned at a higher angle to the substrate and exhibiting reduced device performance. Conversely, spin‐coated films do not undergo any new polymorph formation or structural reorganization with thermal annealing. PVD fabricated films are thus more readily able to undergo transformations to structure and morphology with post deposition processing, while the microstructure of spin‐coated films is established at the time of deposition.

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3