Recent Progress of Non‐Noble Metallic Heterostructures for the Electrocatalytic Hydrogen Evolution

Author:

Song Ailing1ORCID,Song Shenglu1,Duanmu Manman1,Tian Hao2ORCID,Liu Hao2,Qin Xiujuan1,Shao Guangjie1ORCID,Wang Guoxiu2ORCID

Affiliation:

1. Hebei Key Laboratory of Applied Chemistry College of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 China

2. Centre for Clean Energy Technology School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Broadway Sydney NSW 2007 Australia

Abstract

Developing energy production, storage, and conversion technologies based on sustainable or renewable energy is essential to address the energy and environmental crisis. Electrochemical water splitting is one of the most promising approaches to realize the production of green hydrogen. The design of catalytic materials with low cost, high activity, and long‐term stability and the exploration of specific reaction mechanisms are the key focus for the involved electrochemical hydrogen evolution reaction (HER). Recently, substantial efforts have been devoted to the rational design and synthesis of non‐noble metallic heterostructures with fascinating synergistic effects among different components. These heterostructured materials demonstrate comprehensive properties exceeding the estimations by the rule of mixtures and display high activity and long‐term stability in industrial conditions for HER. Herein, the reaction mechanism and key parameters for improving catalytic performance in the HER process are discussed in detail. The latest advances in heterostructures based on synthetic methods and electrocatalytic characteristics from experimental and computational perspectives are summarized according to the role of various components. Herein, insights are provided in this review into an in‐depth understanding of the heterostructures as HER electrocatalysts, and the opportunities and challenges to scale up future‐oriented developments are highlighted.

Funder

Australian Research Council

University of Technology Sydney

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3