Low‐Temperature Processed Efficient and Reproducible Blade‐Coating Organic Photovoltaic Devices with γ‐Position Branched Inner Side Chains‐Containing Nonfullerene Acceptor

Author:

Won Donghoo1,Kang So‐Huei1,Park Jaeyeong1,Park Jeewon1,Kim Wonjun1,Mai Thi Le Huyen1,Lee Seunglok1,Yang Changduk12ORCID

Affiliation:

1. School of Energy and Chemical Engineering Perovtronics Research Center Low Dimensional Carbon Materials Center Ulsan National Institute of Science and Technology (UNIST) 50 UNIST‐gil, Ulju‐gun Ulsan 44919 South Korea

2. Graduate School of Carbon Neutrality Ulsan National Institute of Science and Technology (UNIST) 50 UNIST‐gil, Ulju‐gun Ulsan 44919 South Korea

Abstract

Recent advancements in blade‐coating organic photovoltaic (OPV) devices utilizing eco‐friendly nonhalogenated solvents have demonstrated high power conversion efficiencies (PCEs) when processed at high substrate temperatures. However, this method poses challenges in device reproducibility and stability. Herein, a BTP‐eC9‐γ nonfullerene acceptor (analogous to BTP‐eC9) with γ‐position‐branched inner side chains within the BTP‐eC9‐based structural motif is developed. This pin‐sized extension in the branching position enhances the solubility of BTP‐eC9‐γ in nonhalogenated toluene solvent. This improvement not only mitigates excessive aggregation in the film state but also facilitates device fabrication at lower substrate temperatures. Optimized at a substrate temperature of 40 °C, the BTP‐eC9‐γ‐based blade‐coating devices with toluene achieve remarkable PCEs of 16.43% (0.04 cm2) and 14.95% (1.0 cm2). Furthermore, these devices retain their high film uniformity at 40 °C, which contributes to superior device reproducibility. This is attributed to the minimized alteration in the evolution kinetics of fluid flow. These findings signify a promising direction for the industrial production of blade‐coating OPV devices.

Funder

Ministry of Trade, Industry and Energy

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3