Affiliation:
1. POLYMAT and Applied Chemistry Department University of the Basque Country UPV/EHU Avenida Tolosa 72 20018 Donostia‐San Sebastian Gipuzkoa Spain
2. Institute for Frontier Materials and ARC Industry Training Transformation Centre for Future Energy Storage Technologies (StorEnergy) Deakin University Burwood Victoria 3125 Australia
3. IKERBASQUE Basque Foundation for Science Bilbao 48009 Spain
Abstract
New material solutions are searched for the manufacturing and safety of current batteries. Herein, an extrusion printable polymer separator for lithium batteries based on single‐ion polymer electrolytes is presented. The polymer electrolytes are based on methacrylic polymeric nanoparticles (NPs) functionalized with a lithium sulfonamide group combined with different organic plasticizers such as sulfolane and carbonates. The synthesis of the polymer NPs is carried out by emulsion copolymerization of methyl methacrylate and lithium sulfonamide methacrylate in the presence of a crosslinker, resulting in particle sizes of less than 30 nm, as shown by electron microscopy. Then polymer electrolytes are prepared by mixing polymer NPs with varying lithium sulfonamide content and different plasticizers such as carbonates and sulfolane. The polymer electrolytes show ionic conductivities between 2.9 × 10−4 and 2.3 × 10−5 S cm−1 at 85 °C with the highest values for the small‐sized NPs with the highest lithium content. As a proof‐of‐concept application, layer‐by‐layer printing of a sulfolane‐based polymer electrolyte is evaluated via direct ink writing directly onto classic battery electrodes. The electrochemical characterization of the printed solid electrolyte indicates favorable properties, ionic conductivity, lithium transfer number, electrochemical stability window, and cyclability in lithium symmetrical cells, to be used in lithium batteries.
Funder
Spanish National Plan for Scientific and Technical Research and Innovation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献