Affiliation:
1. Nanochemistry LaboratoryInstitut de Science et d’Ingénierie Supramoléculaires (I.S.I.S.) Université de Strasbourg & CNRS 8 allée Gaspard Monge 67000 Strasbourg France
2. Centre for Advanced Technologies Adam Mickiewicz University Uniwersytetu Poznańskiego 10 61‐614 Poznań Poland
3. Chemical and Biological Systems Simulation Lab Centre of New Technologies University of Warsaw 02‐097 Warsaw Poland
Abstract
Aqueous zinc‐ion hybrid supercapacitors (Zn‐HSCs) are promising devices for sustainable and efficient energy storage. However, they suffer from a limited energy density compared to lithium‐ion batteries. This limitation can be overcome by developing novel electrode materials, with covalent organic frameworks (COFs) standing out as a particularly intriguing option. Herein, peri‐xanthenoxanthene (PXX) has been integrated for the first time into a COF scaffold to take advantage of its straightforward synthesis, chemical stability, π‐conjugated backbone, and heteroatom content endowing reversible redox reactions at low potentials. Two novel hexagonal COFs have been designed and synthesized by tethering of a PXX‐diamine unit having a C2 symmetry with two distinct tris‐aldehydes acting as C3‐symmetric cornerstones, i.e., triformyl benzene (TFB) and triformylphloroglucinol (Tp), ultimately yielding COF PXX(PhNH2)2‐TFB and COF PXX(PhNH2)2‐Tp, respectively. As cathodes in Zn‐HSCs, COF PXX(PhNH2)2‐Tp exhibits a remarkable specific capacitance, energy, and power densities (237 F g−1, 106.6 Wh kg−1, and 3.0 kW kg−1, respectively), surpassing those of COF PXX(PhNH2)2‐TFB (109 F g−1, 49.1 Wh kg−1, and 0.67 kW kg−1). Importantly, both COFs display outstanding long‐term stability, over 5000 charge/discharge cycles, with capacitance retention >92%. These findings underscore the potential of PXX‐based COFs as high‐performance cathode materials for HSCs, thereby offering a promising new avenue for energy storage technologies.
Funder
Narodowym Centrum Nauki
Narodowe Centrum Nauki
Academic Computer Centre Cyfronet, AGH University of Science and Technology
HORIZON EUROPE Marie Sklodowska-Curie Actions
Agence Nationale de la Recherche