Nanocomposite Hydrogel‐Based Optical Fiber Probe for Continuous Glucose Sensing

Author:

Ahmed Israr1ORCID,El Turk Said1,Al Ghaferi Amal1,Samad Yarjan Abdul23,Butt Haider1ORCID

Affiliation:

1. Department of Mechanical Engineering Khalifa University Abu Dhabi 127788 United Arab Emirates

2. Department of Aerospace Engineering Khalifa University Abu Dhabi 127788 United Arab Emirates

3. Cambridge Graphene Center University of Cambridge Cambridge CB3 0FA UK

Abstract

Diabetes mellitus (DM) presents a substantial global health concern due to elevated blood glucose levels, necessitating an affordable, rapid, and reliable continuous glucose monitoring (CGM) solution. In this pursuit, a pioneering approach is introduced utilizing optical fiber (OF) sensors based on nanocomposite photonic hydrogel functionalized with phenylboronic acid (PBA) for precise CGM. The fabrication of OF sensors involves a streamlined process, involving one‐step polymerization of PBA‐based hydrogel onto a commercial fiber tip and the integration of gold nanoparticles (AuNPs) via a simple dipping process. These sensors offer robust performance within the physiological glucose range (0–20 mm), exhibiting a remarkable 25% increase in transmission intensity and a 4 nm blue shift in the surface plasmon resonance with increasing glucose concentration. Additionally, there is a noticeable elevation in reflection intensity, affirming the sensor's suitability for remote sensing applications. These results are further validated using a green laser, underlining the method's reliability. The sensors exhibit a swift 30 s response time, followed by a 5 min saturation period, for all measurements. Practicality is demonstrated through smartphone readouts, utilizing the phone's photodiode to measure optical power changes concerning various glucose concentrations. These OF sensors hold great promise for CGM integration, enhancing diabetic management.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference53 articles.

1. Recent developments in blood glucose sensors

2. Recent advances in optical sensors for continuous glucose monitoring

3. International Diabetes Federation - Facts & figures @IntDiabetesFed https://idf.org/about-diabetes/diabetes-facts-figures/(accessed).

4. IDF Diabetes Atlas | Tenth Edition 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3