Affiliation:
1. Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
3. Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 China
Abstract
The photo‐rechargeable supercapacitor enables the self‐powering of flexible wearable electronics. However, flexible wearable electronics require supercapacitors not only with excellent flexibility but also with high energy density. P‐diaminoazobenzene (P‐Azo) as a new type of organic electrode material with NN is directly connected to the benzene ring and forms a large π‐conjugated system, which makes it have a lower lowest unoccupied molecular orbital (LUMO) energy level, is beneficial to transfer of electrons, and increases the conductivity of organic molecules. In addition, NN can realize the transfer of two electrons, which makes P‐Azo have a higher energy density. Asymmetric flexible supercapacitors are fabricated by assembling P‐Azo, activated carbon, and an adhesive electrolyte, with 425.2 mW h cm−2 (55.19 Wh kg−1) energy density at a power density of 80 mW cm−2 (10.38 W kg−1), and 90.7% capacitance retention after 80 000 cycles of bending. In this work, supercapacitors and perovskite submodules are coupled to prepare a photo‐rechargeable supercapacitor to achieve a 7% overall energy‐conversion efficiency. Therefore, this supercapacitor paves a practical route for powering future wearable electronics.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Liaoning Province
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献