Excavating the Potential of Photo‐ and Electroupcycling Platforms Toward a Sustainable Future for Waste Plastics

Author:

Chang Ling1,Xia Yan2ORCID

Affiliation:

1. International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province Institute of Microscale Optoeletronics Shenzhen University Shenzhen 518060 China

2. Institute of Fire Safety Materials, School of Materials Science and Engineering NingboTech University Ningbo 315100 China

Abstract

Traditionally, waste plastics have been recycled using crude recycling processes, which pose serious environmental pollution and low recycling efficiency. The best option for managing waste plastics is to upgrade them into high‐value‐added chemicals by breaking down specific chemical bonds in plastic polymers. Herein, this article reviews recent representative research advancements in photo‐ and electrodegradation of plastics for obtaining small‐molecule, high‐value‐added chemicals. The focus is on the application and analysis of emerging technological processes and catalytic materials concepts in these upcycling pathways, with particular emphasis on the diverse functions exhibited by various catalysts. Through the optimization of plastic degradation processes with the rational design of degradation technical processes and catalysts, efficient and selective access to the target products, with the assistance of light and electrical energy with similar action principles, can be achieved. These efforts have yielded promising results, paving the way for resourceful plastic recycling. Particularly, the challenges that arise in upcycling of waste plastics are seriously discussed, and reasonable recommendations have been made to understand future developments and prospects in this research area. It is believed that photocatalysis and electrocatalysis, two emerging degradation methods, play an increasingly important role in the field of plastic upcycling.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3