Affiliation:
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
2. Institute for Superconducting and Electronic Materials Faculty of Engineering and Information Sciences University of Wollongong Wollongong 2500 Australia
Abstract
Second‐order topological insulators (SOTIs) in 2D materials have attracted significant research interest. Recent theoretical predictions suggest that SOTIs can be achievable in 2D magnetic systems, especially within ferromagnetic (FM) materials. Yet, the quest for suitable 2D antiferromagnetic (AFM) materials capable of hosting magnetic SOTIs remains a challenge. Herein, utilizing first‐principles calculations and theoretical analysis, 2D CrSBr is proposed, including monolayer and bilayer forms, as a promising candidate for a magnetic high‐order topological insulator. The monolayer exhibits a FM ground state and features quantized fractional corner charge in its spin‐up channel in the absence of spin–orbital coupling (SOC), yielding fully spin‐polarized corner states. Intriguingly, the bilayer form adopts an AFM ground state while retaining the SOTI properties, with quantized corner charge in both spin channels. Remarkably, the SOTI properties in both monolayer and bilayer structures remain robust against the influence of SOC and symmetry‐breaking perturbations. The work not only identifies a tangible material for realizing 2D magnetic SOTIs, encompassing both FM and AFM phases, but also offers a path to explore the distinctive characteristics of SOTIs merged with magnetism.
Funder
National Natural Science Foundation of China
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献