CoFe2O4@rGO as a Separator Coating for Advanced Lithium–Sulfur Batteries

Author:

Li Yan1,Liu Jiabing2,Wang Xingbo1,Zhang Xiaomin1,Chen Ning3,Qian Lanting4,Zhang Yongguang5,Wang Xin1,Chen Zhongwei4ORCID

Affiliation:

1. South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing South China Normal University Guangzhou 510006 China

2. State Key Laboratory of Reliability and Intelligence of Electrical Equipment School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China

3. Canadian Light Source Saskatoon S7N 2V3 Canada

4. Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada

5. School of Materials Science and Engineering State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China

Abstract

Lithium–sulfur (Li–S) batteries are hindered by the undesired shuttle effect and sluggish electrochemical conversion kinetics. Herein, a well‐designed CoFe2O4@reduced graphene oxide (CFO@rGO) composite is used to modify the separator to develop a multifunctional polysulfide barrier. Density functional theory (DFT) calculations confirm that highly electronegative oxygen ions in CFO tend to bond with transition metal (TM) ions at octahedral (Oh) sites, which induces the formation of FeS and CoS bonds between CFO and polysulfides. This indicates that CFO can effectively anchor polysulfides. Furthermore, the low Li2S decomposition energy barrier and Li+ diffusion energy barrier reveal that CFO can accelerate the redox reaction kinetics of sulfur species. Electronic structure calculations speculate that the low‐energy barrier can be attributed to the electron‐hopping phenomenon between TM ions of different valence states at Oh sites. Benefiting from these advantages, a CFO@rGO/PP separator demonstrates satisfactory cycling performance (0.087% capacity decay rate at 2C with 500 cycles) and superb rate performance (686 mAh g−1 at 5C). This work provides a valuable reference for future research on spinel‐type materials as electrocatalysts for Li–S batteries.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3