Microwave‐Assisted Synthesis of SrTiO3 Nanocuboids without TiCl4

Author:

Peczak Ian L.1,Kennedy Robert M.2,Simpson Aili M.1,Delferro Massimiliano2,Poeppelmeier Kenneth R.1ORCID

Affiliation:

1. Department of Chemistry Northwestern University Evanston IL 60208 USA

2. Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA

Abstract

Strontium titanate (STO) nanocuboids are a novel support for Pt nanoparticle catalysts (Pt/STO). The first of many steps in commercializing Pt/STO will be developing a scalable, environmentally sustainable, and cost‐effective STO nanocuboid synthesis. Herein, Sr–Ti–OH mixtures are synthesized from various Sr2+ and Ti4+ reagents and treated by convection‐ and microwave‐assisted heating to obtain STO nanoparticles. These experiments clarify how phase composition of the prehydrothermal Sr–Ti–OH mixture and choice of heating method affect final nanoparticle morphology. In Sr–Ti–OH mixtures synthesized with TiCl4, STO is the most stable phase and precipitates prior to heating, while titania sol–gels are the most stable phase when other Ti4+ sources are used. STO nanocrystals always form when Sr–Ti–OH mixtures are treated by convection heating, though nanocuboids are only observed if STO precipitates from the Sr–Ti–OH mixture. Microwave‐assisted hydrothermal treatment more rapidly heats the precursor solution, and thus, STO nanocuboids can form from a variety of Sr–Ti–OH mixtures regardless of mixture composition. Two microwave syntheses of STO nanocuboids are reported: one which uses TiCl4 as a Ti4+ source, and another that uses titanium(IV) bis(ammonium lactato) dihydroxide ([NH4CH3CH(O)CO2]2Ti(OH)2), a water‐stable Ti4+ complex.

Funder

Basic Energy Sciences

Laboratory Directed Research and Development

Office of Science

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3