High‐Performance Se–S Composite Cathode Rich in Defects for Wide‐Temperature Solid‐State Lithium Batteries

Author:

Shi Xiaomeng1,Zeng Zhichao1,Wen Yongqing2,Zhang Hongtu1,Zhang Yabin3,Du Yaping14ORCID

Affiliation:

1. Tianjin Key Lab for Rare Earth Materials and Applications Center for Rare Earth and Inorganic Functional Materials Smart Sensing Interdisciplinary Science Center School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China

2. Baotou Research Institute of Rare Earths Rare Earth Advanced Materials Technology Innovation Center Baotou 014010 China

3. State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources Environment and Materials Guangxi University Nanning 530004 China

4. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300350 China

Abstract

All‐solid‐state lithium batteries (ASSLBs) are a research hotspot for their superior safety. The solid electrolytes (SEs) are key components in ASSLBs, and the emerging rare‐earth halide SEs (RE‐HSEs) are valued for their comprehensive performances of good ionic conductivity, electrochemical stability, and deformability. In addition, cathode materials can influence the properties of ASSLBs, and sulfur (S) attracts much attention due to the lower toxicity and much higher energy density compared with commercial oxide cathodes. However, the S possesses poor electronic conductivity, which can be improved by the introduction of selenium (Se) with much higher electronic conductivity. In this work, a series of SexS1–x composites is synthesized by a melting method. Due to the introduction of Se and the enriched defects from the melting process, the electronic and ionic conductivities of SexS1–x are improved. After application in ASSLBs based on RE‐HSE Li3YBr6, the SexS1–x materials exhibit good performances with low polarizations, good cycling stabilities, and excellent rate properties at room temperature. Moreover, the assembled solid batteries can realize stable cycling performance (100 cycles) at low temperature (−30 °C) and a normal discharge–charge process at high temperature (120 °C).

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3