Permanently Charged Cationic Lipids—Evolution from Excipients to Therapeutic Lipids

Author:

S Pushpa Ragini123ORCID,Banerjee Rajkumar12,Drummond Calum J.3ORCID,Conn Charlotte E.3ORCID

Affiliation:

1. Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India

2. Department of Oils, Lipid Science and Technology CSIR‐Indian Institute of Chemical Technology Hyderabad 500 007 India

3. School of Science STEM College RMIT University 124 La Trobe Street Melbourne VIC 3000 Australia

Abstract

Cationic lipids are crucial in medical and biotechnological applications including cellular transfection and gene delivery. Ionizable cationic lipids are critical components of the mRNA‐based COVID vaccines while permanently charged cationic lipids have shown promise in cancer treatment. Despite significant research progress over the past few decades in designing improved, biocompatible cationic lipids, their transfection efficiency remains lower than that of viral vectors. Cationic lipids with additional functionalities like fusogenicity, stimuli‐responsiveness, targeting capabilities, and therapeutic activity have been engineered to improve their performance. This review highlights the importance of molecular hybridization toward the design of biocompatible cationic lipids having fusogenic, stimuli‐responsive, targeting, or therapeutic properties. This review mainly focuses on cationic lipids, having a permanent positive charge in the headgroup region, as these are typically employed to both increase cellular interactions and for improved loading, particularly for anionic nucleic acid‐based therapeutics and vaccines. Structure–activity relationships between the lipid chemical structure (headgroup, spacer, hydrocarbon chain) and, to a lesser extent, the self‐assembled nanostructure and the intrinsic biological activity of the multi‐functional cationic lipids are described. Finally, the challenges involved in developing smart lipids without affecting their inherent capacity to self‐assemble into structured nano‐carriers are discussed.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3