Enhanced Interface with Strong Charge Delocalization toward Ultralow Overpotential CO2 Electroreduction

Author:

Tang Yu-Feng1,Zhang Tong1,Mi Hong-Cheng1,Yu Mulin1,Sui Peng-Fei2,Fu Xian-Zhu3,Luo Jing-Li23,Liu Subiao1ORCID

Affiliation:

1. School of Minerals Processing and Bioengineering Central South University Changsha Hunan 410083 China

2. Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta T6G 1H9 Canada

3. College of Materials Science and Engineering Shenzhen University Shenzhen Guangdong 518000 China

Abstract

The construction of an interface has been demonstrated as one of the most insightful strategies for designing efficient catalysts toward electrochemical CO2 reduction (CO2RR). However, the weak interfacial interaction and inherent instability inevitably hinder a further performance enhancement in CO2RR attributable to the interface effect. Herein, 2 nm Ag nanoclusters (Ag NCs) are embedded onto CeO2 nanospheres (CeO2 NSs) with highly interconnected porosity (Ag NCs@CeO2 NSs) to exclusively study the pure interface effect toward CO2RR. The enhanced Ag–CeO2 pure interface endows Ag NCs@CeO2 NSs with a remarkably larger current density, significantly higher Faraday efficiency (FE), and energy efficiency as compared to Ag NCs, CeO2 NSs, and the one with Ag NCs dispersed on CeO2 nanoparticles. More importantly, an impressively high CO FE of over 70.0% is achieved at an ultralow overpotential (η) of 146 mV. The free energy and differential charge calculations, coupled with X‐ray photoelectron spectroscopy results jointly imply that the effective initiation of CO2RR to CO at a lower η over Ag NCs@CeO2 NSs derives from the enhanced interface‐induced charge delocalization, which enhances the electron transfer ability toward *COOH intermediate, thus overcoming the energy barrier demanded for the rate‐determining step.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3