Breaking the Perfluorooctane Sulfonate Chain: Piezocatalytic Decomposition of PFOS Using BaTiO3 Nanoparticles

Author:

Veciana Andrea1ORCID,Steiner Sarah1,Tang Qiao1ORCID,Pustovalov Vitaly1,Llacer‐Wintle Joaquin1ORCID,Wu Jiang1,Chen Xiang‐Zhong23ORCID,Manyiwa Trust4ORCID,Ultra Venecio U.4ORCID,Garcia‐Cirera Beltzane5,Puigmartí‐Luis Josep56ORCID,Franco Carlos1,Janssen David J.7ORCID,Nyström Laura8,Boulos Samy8ORCID,Pané Salvador1ORCID

Affiliation:

1. Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 CH 8092 Zurich Switzerland

2. Institute of Optoelectronics State Key Laboratory of Photovoltaic Science and Technology Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception International Institute of Intelligent Nanorobots and Nanosystems Fudan University Shanghai 200433 P. R. China

3. Yiwu Research Institute of Fudan University Yiwu 322000 Zhejiang P. R. China

4. Department of Earth & Environmental Science Faculty of Science Botswana International University of Science and Technology 10071 Plot Palapye Botswana

5. Departament de Ciència de Materials i Química Física Institut de Química Teòrica i Computacional Universitat de Barcelona 08028 Barcelona Spain

6. Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain

7. Department Surface Waters Eawag: Swiss Federal Institute of Aquatic Science & Technology 6047 Kastanienbaum Switzerland

8. Department of Health Sciences and Technology Laboratory of Food Biochemistry ETH Zurich Schmelzbergstrasse 9 8092 Zürich Switzerland

Abstract

Per‐ and polyfluoroalkyl substances (PFAS) pose significant environmental and health risks due to their ubiquitous presence and persistence in water systems. Herein, the efficacy of piezocatalysis using barium titanate nanoparticles under ultrasound irradiation for the degradation and defluorination of perfluorooctane sulfonate (PFOS) in water is investigated. The research demonstrates a substantial 90.5% degradation and 29% defluorination of PFOS after 6 h of treatment, highlighting the potential of piezocatalysis as a promising approach for PFAS degradation. Additionally, the quantification of degradation products elucidates the transformation pathways of PFOS, suggesting a stepwise chain‐shortening mechanism. The findings underscore the importance of continued research in optimizing piezocatalytic processes and exploring synergistic approaches with other advanced oxidation methods to effectively address PFAS contamination challenges. These efforts are essential for advancing sustainable water treatment strategies and mitigating the environmental and health hazards associated with PFAS contamination.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

HORIZON EUROPE European Institute of Innovation and Technology

Agencia Estatal de Investigación

Generalitat de Catalunya

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3