Large‐Scale Perovskite Single Crystal Growth and Surface Patterning Technologies

Author:

Zhang Jinshuai12,Song Jiepeng1ORCID,Zhang Qing1ORCID

Affiliation:

1. School of Materials Science and Engineering Peking University Beijing 100871 P. R. China

2. Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China

Abstract

In the past decade, metal halide perovskite polycrystalline films have witnessed significant advancements in the field of high‐performance optoelectronic devices, including photodetectors, solar cells, light‐emitting diodes, and lasers. Perovskite films with periodic micro/nanoarrays have garnered substantial attention due to their capability not only to improve the efficiency of individual devices but also to hold great promise for future commercialization. Surpassing their polycrystalline counterparts, perovskite single crystals typically exhibit longer carrier diffusion lengths, extended carrier lifetimes, and enhanced carrier mobility due to the absence of grain boundaries and reduced defects, positioning them as promising candidates for both fundamental studies and advanced optoelectronic devices. To this end, significant endeavors have been dedicated to the development of diverse methodologies for synthesizing large‐scale perovskite single crystals, including bulk single crystals and single‐crystal thin films. Furthermore, aiming to integrate the distinctive functionality with single crystals, considerable efforts have been directed toward the design of certain patterns on single‐crystal surfaces. Herein, this review presents recent progress in technologies for the preparation of large‐scale single crystals and the approaches to patterning their surfaces, highlights the unique advantages of each method, and presents their promising advances in various optoelectronic applications as well as the potential challenges.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference185 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3