Device Physics and Design Principles of Mixed‐Dimensional Heterojunction Perovskite Solar Cells

Author:

Zhang Yuqi12,Yang Zhenhai12,Ma Tianshu12,Ai Zhenhai12,Bao Yining12,Shi Luolei12,Qin Linling12,Cao Guoyang12,Wang Changlei12,Li Xiaofeng12ORCID

Affiliation:

1. School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215006 China

2. Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China Soochow University Suzhou 215006 China

Abstract

Mixed‐dimensional perovskites possess unique photoelectric properties and are widely used in perovskite solar cells (PSCs) to improve their efficiency and stability. However, there is a pressing need for a deeper understanding of the physical mechanisms and design principles of mixed‐dimensional PSCs, as such knowledge gaps impose restrictions on unlocking the full potential of this kind of PSC. Herein, a 2D/3D PSC is employed as an example to clarify the working mechanism of mixed‐dimensional PSCs from the perspective of device physics and elaborate on the design rules of high‐efficiency mixed‐dimensional PSCs. Detailed simulation results indicate that the insertion of a layer of 2D perovskite between the 3D perovskite and the hole transport layer (HTL) can significantly reduce the recombination at the HTL/perovskite interface, and PSCs with a 2D/3D perovskite structure exhibit higher tolerance to material selectivity compared with their 3D counterparts. Additionally, the 2D/3D perovskite design can slow down ion migration and accumulation processes, thereby easing the hysteresis behavior of 2D/3D PSCs. Moreover, it is also found that the 2D/3D perovskite structure has a more pronounced effect on improving the efficiency of wide‐bandgap PSCs. Overall, this work sheds new light on mixed‐dimensional PSCs, enabling better guidance for designing high‐efficiency PSCs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3