Tuning the Immune Cell Response through Surface Nanotopography Engineering

Author:

Rathar Raïssa1ORCID,Sanchez‐Fuentes David2ORCID,Lachuer Hugo3ORCID,Meire Valentin1,Boulay Aude1,Desgarceaux Rudy2,Blanchet Fabien P.1ORCID,Carretero‐Genevrier Adrian2ORCID,Picas Laura1ORCID

Affiliation:

1. Institut de Recherche en Infectiologie de Montpellier (IRIM) Université de Montpellier CNRS UMR 9004 Montpellier 34000 France

2. Institut d’Électronique et des Systèmes (IES) Université de Montpellier CNRS UMR 5214 Montpellier 34000 France

3. CNRS Université de Paris Institut Jacques Monod 75013 Paris France

Abstract

Dendritic cells (DCs) are central regulators of the immune response by detecting inflammatory signals, aberrant cells, or pathogens. DC‐mediated immune surveillance requires morphology changes to adapt to the physical and biochemical cues of the external environment. These changes are assisted by a dynamic actin cytoskeleton–membrane interface connected to surface receptors that will trigger signaling cascades. In recent years, the development of synthetic immune environments has allowed to investigate the impact of the external environment in the immune cell response. In this direction, the bioengineering of functional topographical features should make it possible to establish how membrane morphology modulates specific cellular functions in DCs. Herein, the engineering of one‐dimensional nanostructured SiO2 surfaces by soft‐nanoimprint lithography to manipulate the membrane morphology of ex vivo human DCs is reported. Super‐resolution microscopy and live‐cell imaging studies show that vertical pillar topographies promote the patterning and stabilization of adhesive actin‐enriched structures in DCs. Furthermore, vertical topographies stimulate the spatial organization of innate immune receptors and regulate the Syk‐ and ERK‐mediated signaling pathways across the cell membrane. In conclusion, engineered SiO2 surface topographies can modulate the cellular response of ex vivo human immune cells by imposing local plasma membrane nano‐deformations.

Funder

ANRS

European Research Council

French National Research Agency

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3