Ultraminiaturized Microfluidic Electrochemical Surface‐Enhanced Raman Scattering Chip for Analysis of Neurotransmitters Fabricated by Ship‐in‐a‐Bottle Integration

Author:

Bai Shi12ORCID,Ma Ying3,Obata Kotaro1,Sugioka Koji1

Affiliation:

1. Advanced Laser Processing Research Team RIKEN Center for Advanced Photonics 2-1 Hirosawa, Wako Saitama 351-0198 Japan

2. School of Material Science and Engineering Hebei University of Science and Technology Shijiazhuang 050018 China

3. Academy of Artificial Intelligence Beijing Institute of Petrochemical Technology No.19 North Qingyuan Road, Daxing District Beijing 102617 China

Abstract

Electrochemical surface‐enhanced Raman scattering (EC‐SERS) is a promising technique for the diagnosis of trace amounts of neurotransmitters, because it can elucidate neurotransmitters’ behavior on electrodes to deduce their functions in the human body. However, the current EC‐SERS devices need several tens of milliliters of analyte solution to collect enough signal for analysis. Miniaturization of EC‐SERS devices is crucial for the early diagnosis of disease and point‐of‐care testing. Herein, a new type of EC‐SERS sensor based on 3D microfluidic chips for the analysis of neurotransmitters in ultrasmall volumes is proposed. The microfluidic EC‐SERS chip is fabricated by a ship‐in‐a‐bottle technique based on hybrid laser processing. The working electrode is modified using silver/zinc oxide materials, enabling the formation of a unique “candy apple” structure. To assess the fabricated microfluidic EC‐SERS chips, ascorbic acid is analyzed using the ingenious microfluidic EC‐SERS chips to elucidate its redox reaction by EC‐SERS spectroscopy. Significantly, a sub‐10 μL volume of analyte solution is sufficient for EC‐SERS analysis, which is several orders smaller in volume than the requirements of current EC‐SERS devices. The unprecedented microfluidic EC‐SERS chips fabricated by the ship‐in‐a‐bottle integration technique can be used in portable and smart analyzers for next‐generation biomedicines and catalysts.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3