A Versatile Microchannel Array Device for Portable and Parallel Droplet Generation

Author:

Tang Zhengmin1ORCID,Reynolds David Eun2,Lv Caishu3,Zhang Dandan4,Ko Jina2,Wang Yongcheng1ORCID

Affiliation:

1. Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory Zhejiang University School of Medicine Hangzhou 311121 China

2. Department of Bioengineering Department of Pathology and Laboratory Medicine University of Pennsylvania Philadelphia 2926 USA

3. Department of engineering Xinhaohui Biotech Hangzhou 311121 China

4. Department of Pathology Key Laboratory of Disease Proteomics of Zhejiang Province School of Medicine Zhejiang University Hangzhou 310058 China

Abstract

The efficient generation of monodispersed droplets holds great promise for micro‐/nanoparticle synthesis and biochemical analysis. However, it remains a challenge to achieve high‐throughput generation of monodispersed droplets in a portable and/or parallel manner in nonexpert biomedical laboratories. Herein, a versatile microchannel array (μCA) device is reported that is portable, multifaceted, reliable, and mass‐manufacturable, supporting the high‐throughput generation of monodispersed droplets in different ways. This device consists of a silicon‐based μCA chip based on the step emulsification principle, as well as two matching plastic containers, both of which can be mass‐manufactured by traditional microfabrication methods at low material costs. With the μCA device, aqueous solution can be dispersed into emulsion droplets by various modes, such as mechanical pump‐based large‐scale, handheld syringe‐based portable, and gas pump‐based highly parallel droplet generation. Furthermore, it is demonstrated that our cost‐effective device can be applied for digital polymerase chain reaction analysis, supporting the need for more accessible microfluidic systems. Thus, the present device is expected to have a significant impact on both benchside and bedside applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3