Charge Steering in Heterojunction Photocatalysis: General Principles, Design, Construction, and Challenges

Author:

Eshete Mesfin12,Li Xiyu1,Yang Li1,Wang Xijun1ORCID,Zhang Jinxiao3,Xie Liyan4,Deng Linjie1,Zhang Guozhen1,Jiang Jun1ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale School of Chemistry and Materials Science University of Science and Technology of China Jinzhai Road 96 Hefei Anhui 230026 P. R. China

2. Department of Industrial Chemistry College of Applied Sciences Nanotechnology Excellence Center Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia

3. College of Chemistry and Bioengineering Guilin University of Technology 12 Jian'gan Road Guilin Guangxi 541004 P. R. China

4. A Key Laboratory of the- Ministry of Education for Advanced- Catalysis Materials Department of Chemistry Zhejiang Normal University Jinhua Zhejiang 321004 P. R. China

Abstract

Steering charge kinetics is a key to optimizing quantum efficiency. Advancing the design of photocatalysts (ranging from single semiconductor to multicomponent semiconductor junctions) that promise improved photocatalytic performance for converting solar to chemical energy, entails mastery of increasingly more complicated processes. Indeed, charge kinetics become more complex as both charge generation and charge consumption may occur simultaneously on different components, generally with charges being transferred from one component to another. Capturing detailed charge dynamics information in each heterojunction would provide numerous significant benefits for applications and has been needed for a long time. Here, the steering of charge kinetics by modulating charge energy states in the design of semiconductor–metal‐interface‐based heterogeneous photocatalysts is focused. These phenomena can be delineated by separating heterojunctions into classes exhibiting either Schottky/ohmic or plasmonic effects. General principles for the design and construction of heterojunction photocatalysts, including recent advances in the interfacing of semiconductors with graphene, carbon quantum dots, and graphitic carbon nitride are presented. Their limitations and possible future outlook are brought forward to further instruct the field in designing highly efficient photocatalysts.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3